Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres
نویسندگان
چکیده
Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (-2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g(-1) and 640 mAh g(-1) at 0.1 A g(-1).
منابع مشابه
A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage.
A novel 2D hybrid with MoS(2) nanocrystals strongly coupled on nitrogen-enriched graphene (MoS(2)/NG(g-C(3)N(4))) is realized by mild temperature pyrolysis (550 °C) of a self-assembled precursor (MoS(3)/g-C(3)N(4)-H(+)/GO). With rich active sites, the boosted electronic conductivity and the coupled structure, MoS(2)/NG(g-C(3)N(4)) achieves superior lithium storage performance.
متن کاملSwift tuning from spherical molybdenum microspheres to hierarchical molybdenum disulfide nanostructures by switching from solvothermal to hydrothermal synthesis route
Herein, we report the synthesis of metallic molybdenum microspheres and hierarchical MoS2 nanostructures by facile template-free solvothermal and hydrothermal approach, respectively. The morphological transition of the Mo microspheres to hierarchical MoS2 nanoflower architectures is observed to be accomplished with change in solvent from ethylenediamine to water. The resultant marigold flower-l...
متن کاملSynthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries
Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. Durin...
متن کاملMolybdenum Carbide Nanoparticles Coated into the Graphene Wrapping N‐Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media
Molybdenum carbide (Mo2C) is recognized as an alternative electrocatalyst to noble metal for the hydrogen evolution reaction (HER). Herein, a facile, low cost, and scalable method is provided for the fabrication of Mo2C-based eletrocatalyst (Mo2C/G-NCS) by a spray-drying, and followed by annealing. As-prepared Mo2C/G-NCS electrocatalyst displays that ultrafine Mo2C nanopartilces are uniformly e...
متن کاملFree-standing hierarchically sandwich-type tungsten disulfide nanotubes/graphene anode for lithium-ion batteries.
Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one-dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage, Li-ion batteries, and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015